Some Properties Z-S Semi Models

Manar Naji Ghayyib^{1a}, Aya Adnan Mousa Abd², Zaman Adel Rashid³

¹Baghdad university ,collage of engineering

² university of information technology and communication

^{3.} Baghdad university ,collage of science

^a <u>Manar.naji@sc.uobaghdad.edu.iq</u>

Keywords: Small prime submodules, Z-small submodules, prime submodules, small submodule, singular module.

Abstract. Let H unital (left) E–module where E commutative ring with identity. As generalization of small prime submodule we present and discuss the idea of Z-small prime submodule. Among the result that we obtain the following: a submodule W of a finitely faithful multiplication E - module. If W is Z-S-P submodule of H, then [W:H] is a Z-S-P- ideal of E.

Introduction

Let W be a submodule and not equal of an E-module H then W is called prime if whenever $e \in E$, $h \in H$ and $eh \in W$ gives us either $h \in H$ or $e \in [W:H]$, [1-3]. As a generalization of this concept [4] suggest idea of small prime submodule , where a proper submodule W of an E-module H is small prime if $e \in E$, $x \in H$, < x > is small in H and $ex \in W$, then either $x \in W$ or $e \in [W:H]$. A submodule W of an R-module is called small (denoted by W \ll H) if for every N \subseteq H with W+N = H implies N = H.

And $W \subset H$ (H is E-module) is tremed a Z-small submodule (in symble $W \ll z H$) if W+N = H, where $N \subseteq H$ with $N \supseteq Z2/(H)$, then N = H, where Z2/(H) is defined by Z(H/Z(H)) = Z2(H)/Z(H). We introduce the concept of Z-small prime submodule(in short Z-S-P), where submodule W of E-module ($W \subset H$) is called Z-S-P submodule (denoted by $W \ll Z-P H$) if and only if whenever $e \in E$, $x \in H$, with $< x > \ll z H$ and $ex \in W$ gives us either $e \in [W:H]$ or $x \in W$.

This paper consist of three sections , in section one we give an introduction for this paper . In section two we present the idea of Z-small prime submodule and study many properties of this concept. In section three we study the relation of this concept and another

Mothedlogy of research

Concept of submodules. Z–S-P Submodules In this section we study the concept of Z–S-P submodule, and we provide some examples and basic properties about it.

Definition 2 .1:

A proper submodule W of H (H is E – module) is called a Z–small prime submodule and it is denoted by (W \ll Z–P H) if and only if whenever $e \in E$, $x \in H$, and $< x > \ll z$ H and $rx \in W$ we have either $e \in [W:H]$ or $x \in W$.

Actually ideal L of ring E is termed Z-S-P if L is a Z-S-P submodule of E-module E . Similarly, actually ideal K of a ring E is Z-small prime ideal if and only if whenever s , $e \in E$ with $< s > \ll zE$ and $es \in K$ we have either $e \in L$ or $s \in K$.

Remark and examples 2 .2:

1. Let $W \ll Z - P$ H then W be a small prime submodule.

Proof:

Let $0 \neq W \subset H$, and H is an E-module which is Z-small prime.

Let $e \in E$, $x \in H$ with $< x > \ll H$ and $ex \in W.$ Since every small submodule is Z-small

by [5], so $\langle x \rangle \ll z H$. But W is Z-S-P submodule so either $e \in [W:H]$ or $x \in W$.

The reverse is not correct largely : For that, consider H = Z24 as a Z-module and $W = \langle \overline{6} \rangle = \{\overline{0}, \overline{6}, 1\overline{2}, 1\overline{8}\}$. W is small prime submodule by [4] but not Z-S-P submodule. To prove that W is not Z-S-P submodule of H, we have [W:H]=6Z. Notice that $\overline{0} = 8 \cdot \overline{3}$, and $\langle \overline{3} \rangle \ll Z H$, but $\overline{3} \notin W$ and $8 \notin [W:H]$, thus W is not Z-small

prime submodule.

2. Let H be an E-module and $\langle x \rangle$ is small(x ϵ H) then every small prime submodule is Z-S-P. (This is the converse of (1) under certain condition)

Proof :

 (\Rightarrow) From (1)

(⇐) Let $0 \neq W \subset H$ such that ex $\Box W$, e $\Box E$, x $\Box H$ with < x >≪Z H. But by assumption < x > ≪ H and again by assumption either x $\Box W$ or e $\Box [W:H]$.

3. Let W be prime submodule of E-module H then each prime submodule is Z-S-P.

4. The reverse of (3) cannot be true in general : take an example W=8Z, H=Z as a Z-module we have W \ll Z-P H, but it's not prime since 2 · 4 \in 8Z, 4 \notin 8Z and 2 \notin [8Z: Z] = 8Z.

5. Every proper submodule W of a hollow E-module H is Z-S-P submodule if and only if W is small prime submodule "where E-module $H \neq 0$ is termed Z-hollow if every $W \subset H$ is Z-small" [5].

Proof :

 (\Rightarrow) From (1)

() Let ex \Box W , e \Box E , x \Box H with < x > Z H . By assumption < x > \ll H . So by assumption we get the result

6. Let W \ll Z–P H and let F \square W then F may not Z-S-P submodule , for example: let W = $\langle \overline{2} \rangle$ is a Z-S-P of Z24 but F = $\langle \overline{8} \rangle \subseteq$ W is not Z-S-P since $2 \cdot 1\overline{2} \in \langle \overline{8} \rangle$

but $12\overline{\textcircled{e}} \notin \langle \overline{8} \rangle$ and $2 \notin [\langle \overline{8} \rangle :z W] = 8Z$.

7. A direct summand of Z-S-P submodule in general cannot be Z-S-P submodule .

Example : consider H = Z24 as a Z-module and W = $\langle \overline{2} \rangle$, it is clear that W = $\langle \overline{6} \rangle$

 $\bigoplus <\overline{8}$, while $<\overline{6}$ is not \ll Z–P H since $8 \cdot \overline{3} \in <\overline{6}$ but $\overline{3} \notin <\overline{6}$ and $8 \notin$

$$[<6>:zW] = 3Z$$
.

8. Every nontrivial submodule of Z-module Z6 is Z-s-P, but $<\overline{0}>$ is not a Z-S-P since $2 \cdot \overline{3} \in <\overline{0}>$ with $\overline{3} \notin <\overline{0}>$ and $2 \notin [<\overline{0}>:z Z6$

] = 6Z .

9. If D<W<H , and H is an E-module with D is a Z-S-P in W , W is Z-small in H , this is not necessary lead to $D \ll Z-P H$, by the following example shown:

Let $D = \langle \overline{4} \rangle$, $W = \langle \overline{2} \rangle$ be submodules of Z24. As we see that W is Z-small prime submodule of Z24 and one can easily show that D is Z-S-P in W, yet D is not Z-S-P in Z24 since $\overline{4} = 2 \cdot \overline{2} \in \langle \overline{4} \rangle$, and $\langle \overline{4} \rangle \ll \mathbb{Z}$ Z24. But $\overline{2} \notin \langle \overline{4} \rangle$ and $2 \notin [D: \mathbb{Z}24] = 4\mathbb{Z}$.

10. Let $0 \neq G$ be an ideal of the ring Z such that $G \neq Z$, then G is a Z-S-P ideal, since Z is an integral domain with < 0 > is the only Z-small ideal of Z.

11. If $L \subseteq H \subseteq F$ with $H \ll Z - PF$, then it is not necessarily $L \ll Z - PH$ for example: let $L = \langle 12\overline{2} \rangle$, $H = \langle \overline{2} \rangle$ in the Z-module Z24 as we show that H is Z-small prime submodule

in Z24 . But L is not Z-S-P in H since $3 \cdot \overline{8} \in L$, and $\overline{\langle 8 \rangle} \ll Z$ Z24. But $\overline{8} \notin L$ and $3 \notin [L:H] = 6Z$

12. Every Z–small submodule is a Z-S-P submodule, but the converse cannot be true in general, this is because in the Z –module Z, if we take A = 3Z, then A is a Z-S-P

submodule , yet it is not Z–S submodule .13. If W«Z–P H then it is not necessary be annEW prime ideal of E .Such as: if H = Z24 a Z-module and W = $\langle \overline{2} \rangle$, thus ann $\langle \overline{2} \rangle$ = 12Z is not prime ideal of Z since $3 \cdot 4 = 12 \in 12Z$, but 3 and $4 \notin 12Z$. 14. If H and W are submodules of an E-module F and H+W is Z –small prime in Z, but in general, it is not necessarily that H and W «Z–P Z for example:let H = $\langle \overline{4} \rangle$, W = $\langle \overline{6} \rangle$ are submodules of Z-module Z12.

Notice that , $H+W = \langle \overline{2} \rangle$. One can easily show that $\langle \overline{2} \rangle \ll Z-P$, but H is not Z-small prime submodule of Z12 since $2 \cdot \overline{2} \in \langle \overline{4} \rangle$, but $\overline{2} \notin \langle \overline{4} \rangle$, $\langle \overline{2} \rangle \ll Z$ Z12 and $2 \notin Z$

[H: Z12] = 4Z also W is not Z-small prime submodule in Z12 since $2 \cdot \overline{3} \in \langle \overline{6} \rangle$, $\langle \overline{3} \rangle \ll \mathbb{Z}$ Z12 but $\overline{3} \notin \langle \overline{6} \rangle$ and $2 \notin [W: \mathbb{Z}$ 12] = 6Z.

15. Consider F as E-module and L ideal of E where $L \subseteq ann(F)$. Let $W \subseteq F$ then W is Z-S-P submodule of F if and only if W is Z-S-P E/L of F.

Proof: Let $r + l \in E/L$, $x \in F$ such that $\langle x \rangle \ll z F$ and $(r + l)x \in W$. As $L \subseteq$ an F,

we have $(r + L)x = rx \in W$, but W is a Z-small prime submodule of F, so either $r \in$

[W:F] or $x \in E$. Hence, the result follows easily .

Proposition 2.3: [6]

Let T be a maximal submodule of an E-module F then [T:F] is maximal ideal of E.

Proposition 2 .4: [7]

Let T be a maximal submodule of an E-module F , if [T: F] is a maximal ideal , then T will be a prime submodule .

Corollary 2.5:

Let $T \subseteq F$, if we have [T : F] as a maximal ideal, then $T \ll Z - P F$.

Proof:

Clear by Propositions 2.2 and 2.4, respectively.

Corollary 2.6:

If W is a maximal of E-module H, then W is prime ($W \subset H$)

Proof:

Clear by Propositions 2.4, 2.1 and Corollary 2.5.

Corollary 2 .7: [6]

Let H be an E-module, consider I as maximal ideal of E. If $IH \neq H$, so IH is aprime submodule of H." Recall E-module H is named multiplication, if every $W \subseteq H$, W = [W:H]H where $[W:H] = \{e \in E : eH \subseteq W\}$ " [8]"Recall E-module H is faithful if its annihilator is zero" [9].

Theorem 2.8:

Consider H is a finitely generated faithful multiplication E - module and $W \subset H$, so $W \ll Z - P H$ if and only if [W:H] is a Z-prime ideal of E.

Proof:

Let r, $s \in E$ and $\langle s \rangle \ll Z E$ with $rs \in [W:H]$ then $(rs)H \subseteq W$, but $\langle rs \rangle \subseteq \langle s \rangle \ll Z E$, then $\langle rs \rangle \ll Z E$, by [5]. So, H is finitely generated faithful multiplication E- module, thus $(rs)H \ll Z$ H, by [5], therefore either $s \in [W:H]$ or $r \in [W:H]$, and so [W:H] is a Z-small prime ideal of E. **Proposition 2.9:**

Consider W and L are Z-small prime submodules of H , and H is an E - module such that [W:H] = [L:H] . So, $W \cap L \ll Z - P C$.

Proof:

Let $e \in E$, $x \in H$ with $\langle x \rangle \ll z$ H and $ex \in W \cap L$, then $x \in W$ and $ex \in L$. Since W, L are Z-small prime submodule then either $e \in [W:H]$ or $x \in W$ and either $e \in [L:H]$ or $x \in L$. Hence, $x \in W$ and $x \in L$ or $e \in [W:H] = [L:H]$. Which implies $x \in W \cap L$ or $e \in [W \cap L:H]$. Therefore, $\cap L \ll Z-P$ H.

Proposition 2.10:

If W \ll Z–P H and H is an E –module with I will be any ideal of E, then we will have [W:I] \ll Z–P H .

Proof:

Let $e \in E$, $x \in H$ with $\langle x \rangle \ll z H$ and $x \in [W : I]$. Then $exI \le W$. Such that $exa \in W \forall a \in I$. But $\langle xa \rangle \le \langle x \rangle$. Then $\langle xa \rangle \ll z H$ by [5] therefore, either $xa \in W \forall a \in I$ or $e \in [W:H] \le [[W:I]:H]$. So, either $xI \le W$ or $e \in [[W:I]:H]$. Thus either $x \in [W:I]$ or $e \in [[W:I]:H]$ and that is what we want to prove.

Remark 2.11:

The converse of previous proposition isn't correct largely.By way of illustration: H = Z45 a Z module and $W = \langle 15\overline{5} \rangle$, I = 3Z then[W:H I] = $[\langle 15\overline{5} \rangle$:H $3Z] = \langle 5 \rangle$ is Z–S-P submodule of H But W is not Z–S-P submodule of H because $6 \cdot 5 \in \langle 15\overline{5} \rangle$, $\langle 5\overline{5} \rangle \ll Z Z45$, but $\overline{5} \notin \langle 15\overline{5} \rangle$ and $6 \notin [\langle 15\overline{5} \rangle: Z45] = 15Z$.

Remark 2 .12:

If L < W < H and W is Z–S-P submodule of H so it is not necessarily L«Z–P H By way of illustration : let H = Z24 as a Z- module and let $L = <\overline{6} >$, $W = <\overline{2} >$ and [L:H] = 6Z, [W:H]=2Z. Then W «Z–P H but L isn't Z-small prime submodule of H. because $8 \cdot \overline{3} \in L$ with $<\overline{3} >$ «Z H but $\overline{3} \notin L$ and $8 \notin [L:H]=6Z$.

Remark 2 .13:

If L < W < H and L is Z–S-P submodule of W so it is not necessarily W«Z–P H. By way of illustration: let H = Z24 as a Z -module and let $L = <1\overline{2} >$, $W = <\overline{6} >$ and [L:W] = 2Z, [W:H] = 6Z. Then L is Z–S-P submodule of W but W is not Z–S-P submodule of H. Because $8 \cdot \overline{3} \in L$ with $<\overline{3} >$ «Z H but $\overline{3} \notin L$ and $8 \notin [L:H]=6Z$.

Remark 2 .14:

If L ,W are submodule of a module H such that $L \ll Z - P$ W then it is not necessarily L is

Z–S-P submodule of H. If we take an example: let H = Z24 as aZ- module and let L = $\langle \overline{8} \rangle$, W = $\langle \overline{4} \rangle$ and [L:H] = 8Z. Then L is Z–S-P submodule of W. But L is not Z–S-P submodule of W because $\overline{0} = 2 \cdot 12$ with $\langle 12 \rangle \ll$ ZH but $12 \notin$ L and $2 \notin$ 8Z.

Another result about Z–S-P submodules

In this section many properties of Z–S-P submodule are given. Moreover, we study the inverse image of Z-small prime sub module.

Result of research

Proposition 3.1:

Let f: $H \rightarrow \dot{H}$ be E- epimorphism and assume $L \ll Z-P \dot{H}$. So, we will have $f-1(L) \ll Z-P H$. **Proof**:

Let ra \in f-1(L) where $e \in E$, $a \in H$, $< a > \ll z H$, then f(ea) = ef(a) $\in L$. Since $< a > \ll z H$ then $< f(a) > \ll z H$ by ([5, Proposition 2 .3) And since L is Z–small prime submodule in H implies either f(a) $\in L$ or $e \in [L: H]$ If f(a) $\in L$ then $a \in f-1(L)$ If $e \in [L: H]$, then $eH \leq L$ and hence $ef(H) = f(eH) \leq L$ which gives $eH \leq f-1(L)$. That means $e \in [f-1(L): H]$. So, f-1(L) $\ll Z-P H$.

Remark 3.2:

Let L \ll Z–P H then a homomorphic image of L is not largely Z–S-P submodule. By way of illustration: f: Z45 \rightarrow Z45 defined by h(\overline{x}) = 3 \overline{x} , $\forall \overline{x} \in$ Z45 notice that the submodule $<\overline{5} > \ll$ Z–P Z45, but h($<\overline{5} >$) = $<1\overline{5} >$ is not Z-small prime submodule of Z45 as we proved in Remark 2.11

Corollary 3.3:

Take L ,K submodules of E- module H with $K \leq L$ and $L/K \ll Z-P$ H/K then $L \ll Z-P$ H.

Proof:

Let π : H \rightarrow H/K be a natural epimorphism, and since L/K is Z-S-P submodule of H then by K $\pi^{-1}(L/K)$ is Z - S - P submodule of H, so L will be Z-S-P submodule of H.

Remark 3.4:

The converse of previous corollary is not hold in general Take an example: consider H = Z24 be a Z-module and $L = \langle \overline{2} \rangle$, $K = \langle \overline{8} \rangle$, and $K \leq L$. L is Z-S-P submodule of Z24 but $L/K \cong \langle \overline{6} \rangle$ is not Z-S-P submodule of $H/K \cong <\overline{3}>$.

Corollary 3.5:

Let H be an E-module and $A \le B \le C \le H$ with CB is Z-S-P submodule of H B then C/A \ll Z-P H/A.

Proof:

Let h:H/A \rightarrow H/B be the map defined by h(x + A) = x + B, $\forall x \in E$. Clearly h is an epimorphism. Since C/B is Z - S - P submodule of H/B, then by Proposition 3.1, f-1 (C/B) is Z- small prime submodule of H/A that means C/A Z - S - P submodule of H/A

Proposition 3.6:

Let C be finitely generated faithful multiplication E-module . If A is Z-S-P submodule of C so [A:C] is Z-S-P ideal of E.

Proof:

Take x, $a \in E$ with $\langle a \rangle \ll z E$ and $xa \in [A:C]$. then $(xa)C \leq A$. But $\langle xa \rangle \leq \langle a \rangle$ $\ll z E$ implies that $< xa > \ll z E$ by [5]. And since C is f. g faithful multiplication Emodule, therefore $(xa)C \ll z C$. Hence either $e \in [A:C]$ or $a \in [A:C]$ and hence [A:C] is Z-S-P ideal of E. However, we present the next proposition :

Proposition 3.7:

Let M and L be two submodules of an E-module H such that L «Z-P H and M is not contained in L. Then $L \cap M \ll Z - P M$.

Proof:

Since $M \leq L$, so $L \cap M$ will be a proper submodule of M. Now, let $e \in E$, $m \in M$ and $em \in L \cap$ M and $\langle m \rangle \ll Z M$. Suppose $m \notin L$ and since $\langle m \rangle \ll Z H$ by [6, Th. 2.2]. and $L \ll Z - P H$ thus $r \in [L:H]$. Thus $eH \subseteq L$ and hence $em \subseteq L \cap M$ that is $e \in [L \cap M:M]$ and this means that L \cap M is Z-small prime of M.

Proposition 3.8:

Let H1 and H2 be two E-module and let = H1 \oplus H2. If L = L1 \oplus L2 is Z-S-P

submodule of H, so L1 & L2 are Z-S-P submodules of H1 & H2, subsequently.

Proof:

To prove L1 \ll Z–P H1, let r \in R and h1 \in H1 and rh1 \in L1 with < h1 $> \ll$ Z L1 thus r(h1, 0) \in L1 \oplus L2. By [5] if H = H1 \oplus H2, L = L1 \oplus L2, where L1 \leq H1, L2 \leq H2

then L \ll Z H if L1 \ll Z H1 and L2 \ll Z H2 we have < h1 ,0 > \ll Z H1 \oplus H2 , but L1 \oplus L2 is small prime of H, so either (h1,0) \in L1 \oplus L2 or r \in [L1 \oplus L2: H1 \oplus H2]. Then either h1 \in L1 or r \in [L1: H1] \cap [L2: H2] and hence either h1 \in L1 or r \in [L1: H1] this mean that L1 is z-small prime submodule of H. In the similar way one can easily show that L2 is Z-small prime of H2.

Definition 3.9: [7]

Let H be an E-module an E-submodule L of H is termed primary submodule if $L \neq N$ and wherever $rx \in L$, $r \in E$ and $x \in H$ we have either $x \in L$ or $r \in [L:H]$, for some $n \in Z$ where $[L:E H] = \{r : I \in L \}$

 $r \in E$ and $Rh \subseteq L$.

Remark 3 .10:

There is no relation between Z-small prime submodules and primary submodules as the next examples show:

Take $\langle \overline{4} \rangle$ of Z-module Z24 is not Z-S-P but it is primary .The submodule $\langle 1\overline{5} \rangle$ in Z-module Z45 is Z-small prime, but it is not primary since $3 \cdot \overline{5} \in \langle 15 \rangle$ but $\overline{5} \notin \langle 1\overline{5} \rangle$ and $3n \notin [\langle 1\overline{5} \rangle$:Z Z45] = $\langle 1\overline{5} \rangle$, for all $n \in Z$ + The following proposition gives the relation between Z-small prime submodule and primary submodule under certain condition Recall that, "a proper ideal I of a ring E is called semi-prime ideal if whenever $x \square E$ such that $x \in I$ then $x \in I$.

Proposition 3 .11:Let W be a primary submodule of an E-module H and [W :E H] is semi prime ideal of E, then W will be Z-small submodule of H.

Proof:

Assume W is a primary submodule with [W:E H] semi prime ideal, let $rm \in W$, $r \in E$, $h \in H$ and suppose $h \notin W$ but W is a primary submodule, so $r^n \in [W: E H]$, for some $n \in Z$ and hence $r \in \sqrt{[W:E H]}$, but [W:E H] is semi prime, hence $r \in [W:E H]$ thus W is Z-small prime submodule of H.

Definition 3 .12: [11]

Let H be an E-module , then $Z(H) = \{x \in H , ann(x) \le E\}$ is called the singular submodule of H. **Proposition 3.13:**

Let H be an E-module such that every cyclic submodule is singular. Then every Z-S-P submodule is prime submodule.

Proof:

Let W be a Z-S-P submodule of H and let $ra \in W$, if $\langle a \rangle \subseteq H$ then $\langle a \rangle$ is singular so by [5], $\langle a \rangle \ll z$ H. But W Z-S-P submodule so either $a \in W$ or $r \in [W:H]$ so W is prime submodule.

Conclusion

In this paper we succeed to present the concept of Z-small prime submodule and we showed that it is an expand to the concept of small prime submodule . And we presented some important relations between Z-small prime submodules and other kinds of modules.

References

[1] M. a. a. Y. Tiras, "On Prime submodules," the rocky mountain journal of mathematics, vol. 23 (2007) pp.709-722.

[2] Y. a. A. H. a. P.F.Smith, "A Charaterization of Prime Submodules," Jurnal of Algebra, vol. 212 (1999)pp. 743-752.

[3] R. a. P.F.Smith, "Prime Submodule of Noetherian Modules," Rocky mountain journal of mathematics, vol. 23, no. 3, (1993).

[4] L. S.Mahmood, "Small Prime Modules and Small Prime Submodules," Journal of Al-nahrain university, vol. 15, no. 4 (2012)pp. 111-119.

[5] A. a. A.A.Elewi, "Z-Small Submodules and Z-hollow Submodules," Iraqi journal of science, vol. 62, no. 8 (2021)pp. 2708-2713.

[6] I. M.A.Hadi, Prime Submodules(modules) and some of their generalizations, baghdad: bookstore for printing puplishing and translating(2023).

[7] C.P.Lu., "Prime Submodules of Modules," math univ. sanct pauli, vol. 33, no. 1, (1984)pp. 61-69.

[8] E.-b. Z. P. Smith, "multiplication modules," communications in algebra, vol. 16, no. 4

(1988)pp.

755-779.

[9] S. endo, "Completely faithful modules and quasi-Frobenius algebra," J. Math. Soc.Japan, vol. 19, no. 4 (1967)pp. 438-456.

[10] Y. R. A. V, "Semi prime ideals in gernal lattices," journal of pure and applied algebra, vol. 56, no. 2(1989) pp. 105-118 .

[11] F. Kash, Modules and rings, london, new york: Academic Press (1982).

[12] H. K. M. a. a. S. J. Mahmood, "Weakly Approximately Quasi-Prime Submodules and related concepts," Ibn al haitham journal for pure and applied sciences, vol. 34, no. 2 (2021) pp. 56-69.

[13] M. A. a. I. A. D. a. Z. Atiya, "Purely Small Submodules and purely Hollow modules," iraqi journal of science, vol. 63, no. 12 (2022)pp. 5487-5495.

[14] W. A. A. a. N. S. A. Mothafar, "On Quasi-Small Prime Submodules," iraqi jurnal of science, vol. 63, no. 4 (2022) pp. 1692-1699.

[15] M.N. Ghayyib, A.I. F.Al-Rubaie, F.A. Adnan. "A Statistical Analysis of the Effects of Afforestation on the Environment in Iraq (Northern Iraq)." In IOP Conference Series: Earth and Environmental Science, vol. 1215, no. 1 (2023) p. 012039. IOP Publishing.

[16] F. A. Adnan, A. H. AlHaddada, Z.A. A. Alia, and M.N.Ghayyib. "The Influence of the Magnetic Domain on The Peristaltic Motion of The Non-Newtonian Fluid in A Curved Tube. Advances in the Theory of Nonlinear Analysis and its Applications(2023) 7(4), pp. 99–113.